今天是:2017年11月27日 星期一

研究成果

论文第一版

当前位置: 首页 >> 研究成果 >> 论文第一版 >> 正文

2021及以前

发布日期:2023-05-15    作者:     来源:     点击:

32.Tuning regioselective oxidation toward phenol via atomically dispersed iron sites on carbon.

Y. X. Ding, P. F. Zhang, H. L. Xiong, X. Y. Sun, A. Klyushin, B. S. Zhang, Z. G. Liu, J. S. Zhang, H. Y. Zhu, Z. A. Qiao*, S. Heumann*, S. Dai*.

Green Chem.2020, 22, 6025-6032.https://pubs.rsc.org/en/content/articlehtml/2020/gc/d0gc01717e

31.On the Remarkable Role of the NitrogenLigand in the Gas-Phase Redox Reaction of the N2O/CO Couple Catalyzed by [NbN]+.

X. Y. Sun, S. D. Zhou*, L. Yue, C. Guo, M. Schlangen, H. Schwarz*.

Angew. Chem. Int. Ed.2019, 58, 3635–3639.https://www.x-mol.com/paper/951767

30.Thermal Activation of CH4 and H2 as Mediated by the Ruthenium-Oxide Cluster Ions [RuOx]+ (x = 1 - 3): On the Influence of Oxidation States.

X. Y. Sun, S. D. Zhou*, L. Yue, M. Schlangen, H. Schwarz*.

Chem.-Eur. J.2019, 25,3550-3559.https://onlinelibrary.wiley.com/doi/10.1002/chem.201806187

29.Tuning the Reactivities of the Heteronuclear [AlnV3-nO7-n]+ (n = 1, 2) Cluster Oxides towards Methane by Varying the Composition of the Metal Centers.

S. D. Zhou*, X. Y. Sun, L. Yue, M. Schlangen, H. Schwarz.

Chem.-Eur. J.2019, 25, 2967–2971.https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201805908

28.On the Origin of the Distinctly Different Reactivity Behavior of Ruthenium in [MO]+/CH4Systems (M = Fe, Ru, Os).

X. Y. Sun, S. D. Zhou*, L. Yue, M. Schlangen, H. Schwarz*.

Angew. Chem. Int. Ed.,2018, 57, 5934–5937.https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201800173


27.Selective Nitrogen-Atom Transfer Driven by a Highly Efficient Intersystem Crossing in the [CeON]+/CH₄ System.

S. D. Zhou*, X. Y. Sun, L. Yue, C. Guo, M. Schlangen, H. Schwarz*.

Angew. Chem. Int. Ed.,2018, 57, 15902–15906.https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201809583


26.Selective C–O Coupling Hidden in the Thermal Reaction of [Al2CuO5]+ with Methane.

S. D. Zhou*, X. Y. Sun, L. Yue, M. Schlangen, H. Schwarz*.

Chem.-Eur. J.,2018, 24, 14649–14653.https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201804059


25. Mechanistic Aspects of Methane Activation Promoted by [MO3]+ (M = Mn, Re).

S. D. Zhou*, X. Y. Sun, L. Yue, M. Schlangen.

Int. J. Mass Spectrom.,2018, 434, 240–245.https://www.sciencedirect.com/science/article/pii/S1387380618302719


24.Catalysis by Hybrid sp2/sp3 Nanodiamonds and Their Role in the Design of Advanced Nanocarbon Materials.

Y. M. Lin, X. Y. Sun, D. S. Su*, G. Centi*, S. Perathoner*.

Chem. Soc. Rev.,2018, 47, 8438–8473.https://pubs.rsc.org/en/content/articlelanding/2018/cs/c8cs00684a#!


23. Direct Room-temperature Conversion of Methane to Protonated Formaldehyde: the Unique Gas-Phase Chemistry of Mercury Among the Zinc

Triad Oxide Cations. Angew.

L. Yue, S. D. Zhou, X. Y. Sun, M. Schlangen, H. Schwarz*.

Chem. Int. Ed.,2018, 57, 3251–3255.https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201712405


22.The Electric Field as a "Smart" Ligand in Controlling the Thermal Activation of Methane and Molecular Hydrogen.

L. Yue, N. Wang, S. D. Zhou, X. Y. Sun, M. Schlangen, H. Schwarz*.

Angew. Chem. Int. Ed.,2018, 57, 14635–14639.https://onlinelibrary.wiley.com/doi/10.1002/anie.201805718


21.A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into Carbon Lattice.

Y. X. Ding, X. Huang, X. F. Yi, Y. X. Qiao*, X. Y. Sun, A. M. Zheng, D. S. Su*.

Angew. Chem. Int. Ed.,2018, 57, 13800–13804.https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201803977


20.Oriented External Electric Fields as a Mimic for Probing the Role of Metal Ions and Ligands in the Thermal Gas-Phase Activation of

Methane.

C. Y. Geng*, J. L. Li*, M. Schlangen*, S. Shaik*, X. Y. Sun, N. Wang, T. Weiske, L. Yue*, S. D. Zhou*, H. Schwarz*.

Dalton Trans.,2018, 47, 15271–15277.https://pubs.rsc.org/en/content/articlelanding/2018/dt/c8dt03048k#!


19.Metal-free, Room-Temperature Oxygen-Atom Transfer in the N2O/CO Redox Couple as Catalyzed by [Si2Ox]•+ (x = 2 - 5).

X. Y. Sun, S. D. Zhou, L. Yue, M. Schlangen, H. Schwarz*.

Angew. Chem. Int. Ed.,2017, 56, 9990–9993.https://onlinelibrary.wiley.com/doi/10.1002/anie.201703453


18.Thermal Methane Activation by the Metal-Free Cluster Cation [Si2O4].+.

X. Y. Sun, S. D. Zhou, M. Schlangen, H. Schwarz*.

Chem.-Eur. J.,2017, 23, 1498–1501.https://onlinelibrary.wiley.com/doi/10.1002/chem.201605496


17.Control of Product Distribution and Mechanism by Ligation and Electric Field in the Thermal Methane Activation.

L. Yue, J. L. Li*, S. D. Zhou, X. Y. Sun, M. Schlangen, S. Shaik*, H. Schwarz*.

Angew. Chem. Int. Ed.,2017, 56, 10219–10223.https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201703485


16.Unexpected Mechanistic Variants in the Thermal Gas-Phase Activation of Methane.

H. Schwarz*, P. G. Navarrete, J. L. Li, M. Schlangen, X. Y. Sun, T. Weiske, S. D. Zhou.

Organometallics,2017, 36, 8–17.https://doi.org/10.1021/acs.organomet.6b00372


15.Thermal Methane Activation by [Si2O5].+ and [Si2O5H2].+: Reactivity Enhancement by Hydrogenation.

X. Y. Sun, S. D. Zhou, M. Schlangen, H. Schwarz*.

Angew. Chem. Int. Ed.,2016, 55, 13345–13348.https://onlinelibrary.wiley.com/doi/10.1002/anie.201607864


14.Efficient Room-Temperature Methane Activation by the Closed-Shell, Metal-Free Cluster [OSiOH]+: A Novel Mechanistic Variant.

X. Y. Sun, S. D. Zhou, M. Schlangen, H. Schwarz*.

Chem.-Eur. J.,2016, 22, 14257–14263.https://onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201601981


13.Oxygen Breaks into Carbon Nanotubes and Abstracts Hydrogen from Propane.

R. Huang, J. Y. Xu, J. Wang, X. Y. Sun, W. Qi, C. H. Liang, D. S. Su*.

Carbon,2016, 96, 631–640.https://www.sciencedirect.com/science/article/pii/S0008622315303316


12.Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

J. Y. Xu, Y. H. Kan, R. Huang, B. S. Zhang, B. L. Wang, K. H. Wu, Y. M. Lin, X. Y. Sun, Q. F. Li, G. Centi, D. S. Su*.

ChemSusChem,2016, 9, 1085–1089.https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201600202


11.New Insights into the Oxidative Dehydrogenation of Propane on Borate-Modified Nanodiamond. Chem.

X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. S. Su*.

Commun.,2015, 51, 9145–9148.https://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc00588d


10.The Effect of Different Phosphorus Chemical States on an Onion-like Carbon Surface for the Oxygen Reduction Reaction.

X. Y. Sun, J. Y. Xu, Y. X. Ding, B. S. Zhang, Z. B. Feng, D. S. Su*.

ChemSusChem,2015, 8, 2872–2876.https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201500154


9.Entrapping an Ionic Liquid with Nanocarbon: the Formation of a Tailorable and Functional Surface.

Y. X. Ding, X. Y. Sun, L. Y. Zhang, S. J. Mao, Z. L. Xie, Z. W. Liu, D. S. Su*.

Angew. Chem. Int. Ed.,2015, 54, 231–235.https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201408201


8.Insight into the Enhanced Selectivity of Phosphate-Modified Annealed Nanodiamond for Oxidative Dehydrogenation Reactions.

X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. Chen, D. S. Su*.

ACS Catal.,2015, 5, 2436−2444.https://www.pubs.acs.org/doi/pdf/10.1021/acscatal.5b00042


7.Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-shell Carbon for Oxidative Dehydrogenation Reaction.

X. Y. Sun, R. Wang, B. S. Zhang, R. Huang, X. Huang, D. S. Su*, T. Chen, C. X. Miao, W. M. Yang.

ChemCatChem,2014, 6, 2270–2275.https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201402097


6.Hybrid Nanocarbon as Catalyst for Direct Dehydrogenation of Propane: Formation of Active and Selective Core-Shell sp2/sp3 Nanocomposite

Structure.

R. Wang, X. Y. Sun, B. S. Zhang, X. Y. Sun, D. S. Su*.

Chem.-Eur. J.,2014, 20, 6324–6331.https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201400018


5.Phosphate-Modified Carbon Nanotubes in the Oxidative Dehydrogenation of Isopentanes.

R. Huang, H. Y. Liu, B. S. Zhang, X. Y. Sun, C. H. Liang, D. S. Su*, B. N. Zong, J. F. Rong.

ChemSusChem,2014, 7, 3476–3482.https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201402457


4.Interaction between Pd Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities,

B. S. Zhang, L. D. Shao, W. Zhang, X. Y. Sun, X. L. Pan, D. S. Su*.

ChemCatChem,2014, 6, 2607–2612.https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cctc.201402272


3.Insight into the Mechanism of Nanodiamond Catalysed Decomposition of Methane Molecules. Phys.

B. W. Zhong, J. Zhang*, B. Li, B. S. Zhang, C. L. Dai, X. Y. Sun, R. Wang, D. S. Su*.

Phys Chem Chem Phys,2014, 16, 4488–4491.https://pubs.rsc.org/en/content/articlelanding/2014/cp/c4cp00179f#!


2.Research Progress in Metal-free Carbon-based Catalysts,

X. Y. Sun, R. Wang, D. S. Su*.

Chin. J. Catal.,2013, 34, 508–523.31.https://www.sciencedirect.com/science/article/pii/S1872206711605159


1.The Unique Role of CaO in Stabilizing the Pt/Al2O3 Catalyst for the Dehydrogenation of Cyclohexane,

J. F. Yu, R. Wang, S. Y. Ren, X. Y. Sun, C. L. Chen, Q. J. Ge*, W. Fang, J. Zhang*, H. Y. Xu*, D. S. Su*.

ChemCatChem,2012, 4, 1376–1381.https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201200067

上一条:2022年