32. Tuning Regioselective Oxidation Toward Phenol via Atomically Dispersed Iron Sites on Carbon
Y. X. Ding, P. F. Zhang, H. L. Xiong, X. Y. Sun, A. Klyushin, B. S. Zhang, Z. G. Liu, J. S. Zhang, H. Y. Zhu, Z. A. Qiao,* S. Heumann,* S. Dai.*
Green Chem., 2020, 22, 6025-6032. https://pubs.rsc.org/en/content/articlehtml/2020/gc/d0gc01717e
31. On the Remarkable Role of the Nitrogen Ligand in the Gas-Phase Redox Reaction of the N2O/CO Couple Catalyzed by [NbN]+
X. Y. Sun, S. D. Zhou,* L. Yue, C. Guo, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2019, 58, 3635–3639. https://onlinelibrary.wiley.com/doi/10.1002/anie.201814460
30. Thermal Activation of CH4 and H2 as Mediated by the Ruthenium-Oxide Cluster Ions [RuOx]+ (x = 1-3): On the Influence of Oxidation States
X. Y. Sun, S. D. Zhou,* L. Yue, M. Schlangen, H. Schwarz.*
Chem. Eur. J., 2019, 25, 3550-3559. https://onlinelibrary.wiley.com/doi/10.1002/chem.201806187
29. Tuning the Reactivities of the Heteronuclear [AlnV3-nO7-n]+ (n = 1, 2) Cluster Oxides towards Methane by Varying the Composition of the Metal Centers
S. D. Zhou,* X. Y. Sun, L. Yue, M. Schlangen, H. Schwarz.*
Chem. Eur. J., 2019, 25, 2967–2971. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201805908
28. On the Origin of the Distinctly Different Reactivity Behavior of Ruthenium in [MO]+/CH4 Systems (M = Fe, Ru, Os)
X. Y. Sun, S. D. Zhou,* L. Yue, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2018, 57, 5934–5937. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201800173
27. Selective Nitrogen-Atom Transfer Driven by a Highly Efficient Intersystem Crossing in the [CeON]+/CH₄ System
S. D. Zhou,* X. Y. Sun, L. Yue, C. Guo, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2018, 57, 15902–15906. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201809583
26. Selective C–O Coupling Hidden in the Thermal Reaction of [Al2CuO5]+ with Methane
S. D. Zhou,* X. Y. Sun, L. Yue, M. Schlangen, H. Schwarz.*
Chem. Eur. J., 2018, 24, 14649–14653. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201804059
25. Mechanistic Aspects of Methane Activation Promoted by [MO3]+ (M = Mn, Re)
S. D. Zhou,* X. Y. Sun, L. Yue, M. Schlangen
Int. J. Mass Spectrom., 2018, 434, 240–245. https://www.sciencedirect.com/science/article/pii/S1387380618302719
24. Catalysis by Hybrid sp2/sp3 Nanodiamonds and Their Role in the Design of Advanced Nanocarbon Materials
Y. M. Lin, X. Y. Sun, D. S. Su,* G. Centi,* S. Perathoner.*
Chem. Soc. Rev., 2018, 47, 8438–8473. https://pubs.rsc.org/en/content/articlelanding/2018/cs/c8cs00684a#!
23. Direct Room-temperature Conversion of Methane to Protonated Formaldehyde: the Unique Gas-Phase Chemistry of Mercury Among the Zinc Triad Oxide Cations
L. Yue, S. D. Zhou, X. Y. Sun, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2018, 57, 3251–3255. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201712405
22. The Electric Field as a "Smart" Ligand in Controlling the Thermal Activation of Methane and Molecular Hydrogen
L. Yue, N. Wang, S. D. Zhou, X. Y. Sun, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2018, 57, 14635–14639. https://onlinelibrary.wiley.com/doi/10.1002/anie.201805718
21. A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into Carbon Lattice
Y. X. Ding, X. Huang, X. F. Yi, Y. X. Qiao,* X. Y. Sun, A. M. Zheng, D. S. Su.*
Angew. Chem. Int. Ed., 2018, 57, 13800–13804. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201803977
20. Oriented External Electric Fields as a Mimic for Probing the Role of Metal Ions and Ligands in the Thermal Gas-Phase Activation of Methane
C. Y. Geng, J. L. Li, M. Schlangen, S. Shaik, X. Y. Sun, N. Wang, T. Weiske, L. Yue, S. D. Zhou, H. Schwarz.*
Dalton Trans., 2018, 47, 15271–15277. https://pubs.rsc.org/en/content/articlelanding/2018/dt/c8dt03048k#!
19. Metal-free, Room-Temperature Oxygen-Atom Transfer in the N2O/CO Redox Couple as Catalyzed by [Si2Ox]•+ (x = 2-5)
X. Y. Sun, S. D. Zhou, L. Yue, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2017, 56, 9990–9993. https://onlinelibrary.wiley.com/doi/10.1002/anie.201703453
18. Thermal Methane Activation by the Metal-Free Cluster Cation [Si2O4].+
X. Y. Sun, S. D. Zhou, M. Schlangen, H. Schwarz.*
Chem. Eur. J., 2017, 23, 1498–1501. https://onlinelibrary.wiley.com/doi/10.1002/chem.201605496
17. Control of Product Distribution and Mechanism by Ligation and Electric Field in the Thermal Methane Activation
L. Yue, J. L. Li,* S. D. Zhou, X. Y. Sun, M. Schlangen, S. Shaik,* H. Schwarz.*
Angew. Chem. Int. Ed., 2017, 56, 10219–10223. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201703485
16. Unexpected Mechanistic Variants in the Thermal Gas-Phase Activation of Methane
H. Schwarz,* P. G. Navarrete, J. L. Li, M. Schlangen, X. Y. Sun, T. Weiske, S. D. Zhou.
Organometallics, 2017, 36, 8–17. https://doi.org/10.1021/acs.organomet.6b00372
15. Thermal Methane Activation by [Si2O5].+ and [Si2O5H2].+: Reactivity Enhancement by Hydrogenation
X. Y. Sun, S. D. Zhou, M. Schlangen, H. Schwarz.*
Angew. Chem. Int. Ed., 2016, 55, 13345–13348. https://onlinelibrary.wiley.com/doi/10.1002/anie.201607864
14. Efficient Room-Temperature Methane Activation by the Closed-Shell, Metal-Free Cluster [OSiOH]+: A Novel Mechanistic Variant
X. Y. Sun, S. D. Zhou, M. Schlangen, H. Schwarz.*
Chem. Eur. J., 2016, 22, 14257–14263. https://onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201601981
13. Oxygen Breaks into Carbon Nanotubes and Abstracts Hydrogen from Propane
R. Huang, J. Y. Xu, J. Wang, X. Y. Sun, W. Qi, C. H. Liang, D. S. Su.*
Carbon, 2016, 96, 631–640. https://www.sciencedirect.com/science/article/pii/S0008622315303316
12. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide
J. Y. Xu, Y. H. Kan, R. Huang, B. S. Zhang, B. L. Wang, K. H. Wu, Y. M. Lin, X. Y. Sun, Q. F. Li, G. Centi, D. S. Su.*
ChemSusChem, 2016, 9, 1085–1089. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201600202
11. New Insights into the Oxidative Dehydrogenation of Propane on Borate-Modified Nanodiamond
X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. S. Su.*
Chem. Commun., 2015, 51, 9145–9148. https://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc00588d
10. The Effect of Different Phosphorus Chemical States on an Onion-like Carbon Surface for the Oxygen Reduction Reaction
X. Y. Sun, J. Y. Xu, Y. X. Ding, B. S. Zhang, Z. B. Feng, D. S. Su.*
ChemSusChem, 2015, 8, 2872–2876. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201500154
9. Entrapping an Ionic Liquid with Nanocarbon: the Formation of a Tailorable and Functional Surface
Y. X. Ding, X. Y. Sun, L. Y. Zhang, S. J. Mao, Z. L. Xie, Z. W. Liu, D. S. Su.*
Angew. Chem. Int. Ed., 2015, 54, 231–235. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201408201
8. Insight into the Enhanced Selectivity of Phosphate-Modified Annealed Nanodiamond for Oxidative Dehydrogenation Reactions
X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. Chen, D. S. Su.*
ACS Catal., 2015, 5, 2436−2444. https://www.pubs.acs.org/doi/pdf/10.1021/acscatal.5b00042
7. Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-shell Carbon for Oxidative Dehydrogenation Reaction
X. Y. Sun, R. Wang, B. S. Zhang, R. Huang, X. Huang, D. S. Su,* T. Chen, C. X. Miao, W. M. Yang.
ChemCatChem, 2014, 6, 2270–2275. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201402097
6. Hybrid Nanocarbon as Catalyst for Direct Dehydrogenation of Propane: Formation of Active and Selective Core-Shell sp2/sp3 Nanocomposite Structure
R. Wang, X. Y. Sun, B. S. Zhang, X. Y. Sun, D. S. Su.*
Chem. Eur. J., 2014, 20, 6324–6331. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201400018
5. Phosphate-Modified Carbon Nanotubes in the Oxidative Dehydrogenation of Isopentanes
R. Huang, H. Y. Liu, B. S. Zhang, X. Y. Sun, C. H. Liang, D. S. Su,* B. N. Zong, J. F. Rong.
ChemSusChem, 2014, 7, 3476–3482. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201402457
4. Interaction between Pd Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities
B. S. Zhang, L. D. Shao, W. Zhang, X. Y. Sun, X. L. Pan, D. S. Su.*
ChemCatChem, 2014, 6, 2607–2612. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cctc.201402272
3. Insight into the Mechanism of Nanodiamond Catalysed Decomposition of Methane Molecules
B. W. Zhong, J. Zhang,* B. Li, B. S. Zhang, C. L. Dai, X. Y. Sun, R. Wang, D. S. Su.*
Phys. Chem. Chem. Phys., 2014, 16, 4488–4491. https://pubs.rsc.org/en/content/articlelanding/2014/cp/c4cp00179f#!
2. Research Progress in Metal-free Carbon-based Catalysts
X. Y. Sun, R. Wang, D. S. Su.*
Chin. J. Catal., 2013, 34, 508–523.31. https://www.sciencedirect.com/science/article/pii/S1872206711605159
1. The Unique Role of CaO in Stabilizing the Pt/Al2O3 Catalyst for the Dehydrogenation of Cyclohexane
J. F. Yu, R. Wang, S. Y. Ren, X. Y. Sun, C. L. Chen, Q. J. Ge,* W. Fang, J. Zhang,* H. Y. Xu,* D. S. Su.*
ChemCatChem, 2012, 4, 1376–1381. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201200067
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
The Group of Cluster Chemistry and Energy Catalysis